Regeneration of the heart in diabetes by selective copper chelation.
نویسندگان
چکیده
Heart disease is the major cause of death in diabetes, a disorder characterized by chronic hyperglycemia and cardiovascular complications. Although altered systemic regulation of transition metals in diabetes has been the subject of previous investigation, it is not known whether changed transition metal metabolism results in heart disease in common forms of diabetes and whether metal chelation can reverse the condition. We found that administration of the Cu-selective transition metal chelator trientine to rats with streptozotocin-induced diabetes caused increased urinary Cu excretion compared with matched controls. A Cu(II)-trientine complex was demonstrated in the urine of treated rats. In diabetic animals with established heart failure, we show here for the first time that 7 weeks of oral trientine therapy significantly alleviated heart failure without lowering blood glucose, substantially improved cardiomyocyte structure, and reversed elevations in left ventricular collagen and beta(1) integrin. Oral trientine treatment also caused elevated Cu excretion in humans with type 2 diabetes, in whom 6 months of treatment caused elevated left ventricular mass to decline significantly toward normal. These data implicate accumulation of elevated loosely bound Cu in the mechanism of cardiac damage in diabetes and support the use of selective Cu chelation in the treatment of this condition.
منابع مشابه
Demonstration of a hyperglycemia-driven pathogenic abnormality of copper homeostasis in diabetes and its reversibility by selective chelation: quantitative comparisons between the biology of copper and eight other nutritionally essential elements in normal and diabetic individuals.
We recently showed that treatment with the Cu(II)-selective chelator, trientine, alleviates heart failure in diabetic rats, improves left ventricular hypertrophy in humans with type 2 diabetes, and increases urinary Cu excretion in both diabetic rats and humans compared with nondiabetic control subjects. In this study, we characterized the homeostasis of Cu and eight other nutritionally essenti...
متن کاملDiabetic cardiomyopathy is associated with defective myocellular copper regulation and both defects are rectified by divalent copper chelation
BACKGROUND Heart disease is the leading cause of death in diabetic patients, and defective copper metabolism may play important roles in the pathogenesis of diabetic cardiomyopathy (DCM). The present study sought to determine how myocardial copper status and key copper-proteins might become impaired by diabetes, and how they respond to treatment with the Cu (II)-selective chelator triethylenete...
متن کاملDetermination of Copper Content of Human Blood Plasma by an Ion Selective Electrode based on a New Copper-Selectophore
A new selectophore was introduced for Cu2+ ions. Spectroscopic studies showed a selectivity of a new organic compound (L) toward copper ions and several transitional metal ions. Hence, L was utilized in designing several ion selective electrodes for these cations. In practice, Cu2+ ion selective electrode behaved Nernstian (slope of 27.95±0.3 mV decade-1) over a...
متن کاملChelation therapy in Wilson's disease: from D-penicillamine to the design of selective bioinspired intracellular Cu(I) chelators.
Wilson's disease is an orphan disease due to copper homeostasis dysfunction. Mutations of the ATP7B gene induces an impaired functioning of a Cu-ATPase, impaired Cu detoxification in the liver and copper overload in the body. Indeed, even though copper is an essential element, which is used as cofactor by many enzymes playing vital roles, it becomes toxic when in excess as it promotes cytotoxic...
متن کاملSolvothermal Synthesis of Cobalt and Copper Sulfides Nanoparticles with High Light Absorptance for New Solar Selective Coatings
New selective coating materials are developed and used in advanced solar collector and absorber designs with improved efficiency. Cobalt and Copper sulfides nanoparticles are high interest for absorbers of solar thermal collectors due to their optical properties and high absorptance in the solar wavelength range (> 96%). In the present work, Cobalt and Copper sulfides nanoparticles were synthes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Diabetes
دوره 53 9 شماره
صفحات -
تاریخ انتشار 2004